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a b s t r a c t

The aim of this work was to develop an integrated process analytical technology (PAT) approach
for a dynamic pharmaceutical co-precipitation process characterization and design space develop-
ment. A dynamic co-precipitation process by gradually introducing water to the ternary system of
naproxen–Eudragit L100–alcohol was monitored at real-time in situ via Lasentec FBRM and PVM. 3D
map of count-time-chord length revealed three distinguishable process stages: incubation, transition,
and steady-state. The effects of high risk process variables (slurry temperature, stirring rate, and water
addition rate) on both derived co-precipitation process rates and final chord-length-distribution were
evaluated systematically using a 33 full factorial design. Critical process variables were identified via
rocess analytical technology (PAT)
o-precipitation
eal-time process monitoring
ritical process variable
esign space

ANOVA for both transition and steady state. General linear models (GLM) were then used for parameter
estimation for each critical variable. Clear trends about effects of each critical variable during transition
and steady state were found by GLM and were interpreted using fundamental process principles and
Nyvlt’s transfer model. Neural network models were able to link process variables with response vari-
ables at transition and steady state with R2 of 0.88–0.98. PVM images evidenced nucleation and crystal
growth. Contour plots illustrated design space via critical process variables’ ranges. It demonstrated the

ppro
utility of integrated PAT a

. Introduction

.1. Some key concepts and tools in relevant regulatory
ocuments

According to the definition of ICH Guideline Q8(R2) (FDA/ICH,
009), “Quality-by-Design (QbD) is a systematic approach to devel-
pment that begins with predefined objectives and emphasizes
roduct and process understanding and process control, based
n sound science and quality risk management.” During the past
ew years, the pharmaceutical quality (Woodcock, 2004) and QbD

mplementation strategies (Yu, 2008; Rathore and Winkle, 2009;
mith et al., 2009) for various pharmaceutical product areas have
eceived a lot of attentions. This pharmaceutical quality paradigm
hift as collectively highlighted by the FDA’s PAT Guidance (FDA,

� Disclaimer: The views and opinions expressed in this paper are only those of the
uthors, and do not necessarily reflect the views or policies of the FDA.
∗ Corresponding author at: DPQR, HFD-940, OTR/OPS/CDER/FDA, The FDA White
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E-mail addresses: Huiquan.Wu@fda.hhs.gov, huiquan wu@yahoo.com (H. Wu).
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ach for QbD development.
Published by Elsevier B.V.

2004) and the ICH Q8, Q8(R2), Q9, and Q10 guidelines (FDA/ICH,
2006a,b, 2007, 2009) has laid a foundation for the science-based
and risk-based regulatory processes.

In the QbD framework, understanding the impact of raw
material attributes and process parameters on the critical qual-
ity attributes (CQAs) as well as identification and control of
sources of variability are essential. However, pharmaceutical prod-
ucts and processes are complicated and multivariate in nature.
Understanding of the relevant multi-factorial relationships among
formulation parameters, process variables, and product quality
attributes usually requires the use of multivariate approaches, such
as statistical design of experiments (DOE) and multivariate data
analysis (MVDA). Although both DOE and MVDA as standard tech-
niques (Montgomery, 2000; Johnson and Wichern, 2007) have been
widely used for many years in various areas, the integrated use of
both of them are relatively few when applied to pharmaceutical
development (Hwang et al., 1998; Naelapaa et al., 2008; Huang

et al., 2009). Over the past few years, some internal efforts (Wu
and Hussain, 2005b; Wu and Khan, 2009; Wu et al., 2009; Xie
et al., 2008) have been made in the aspect of integration of DOE
and MVDA for pharmaceutical product and process understand-
ing, process monitoring and control. In principle, this integrated

dx.doi.org/10.1016/j.ijpharm.2010.11.045
http://www.sciencedirect.com/science/journal/03785173
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pproach in conjunction with appropriate real time process ana-
ytical technology (PAT) process analyzer should provide ample
pportunities for enhanced process understanding, process moni-
oring, and process control of other pharmaceutical processes (such
s crystallization, co-precipitation, etc.) under the QbD/PAT frame-
ork.

.2. Measurement and control of particle size and particle size
istribution in pharmaceutical particulate processes

In general the control of particle size of active pharmaceuti-
al ingredients (APIs) is critical to the successful manufacture of
ost drug product formulations (Am Ende and Rose, 2006). It is
well known fact that many formulation and process variables

ould manifest together to impact particle size distribution (PSD),
hich is ultimately linked to the drug dissolution and bioavail-

bility. Therefore, the ability to accurately measure and effectively
ontrol the crystal shape and crystal size distribution (CSD) is essen-
ial to ensure that desired properties can be achieved for crystalline
PIs or drug components.

Co-precipitation as an important technique has been adapted
o improve the dissolution characteristics of some water-insoluble
rugs in drug delivery systems. Some formulation development
ork had been reported previously (Khan et al., 1994; Zaghloul

t al., 2001). However, our ability to both monitor the co-
recipitation process in real-time and link the formulation and
rocess variables to the key quality attributes of co-precipitate
e.g., PSD) has been very limited (Wu and Hussain, 2005a;
u et al., 2004; Wu and Khan, 2010a), which may present
challenge for co-precipitation process design space develop-
ent.
On-line/in-line/at-line PAT process analyzers offer unprece-

ented opportunities to monitor the process in real-time, thus
nable us to gain dynamic process information in real-time.
nalyzing these real-time dynamic process data via appropriate

echniques including MVDA would enable us to extract critical
roduct/process information and knowledge, which is essential for
ationale product and process design, and process control (Wu et al.,
007a).

A typical process kinetic study invokes the change-one-
ariable-at-a-time strategy, which is essentially a univariate
pproach. Following this approach, a selected model is used to fit
he experimental data. However, possible interactions among var-
ous formulation and process variables may make the traditional
nivariate approach inefficient. As being discussed previously (FDA,
004; Olivieri et al., 2006; Wu et al., 2008, 2009; Wu and Khan,
009), a multivariate approach may provide some alterative solu-
ions.

.3. Focused beam reflectance measurement (FBRM): advantages
nd challenges

Among the PAT tools currently available, as an in situ real-
ime particle measurement technique, Lasentec FBRM has been
emonstrated some unique capabilities and usefulness (Barrett
nd Glennon, 1999; Kougoulos et al., 2005) in the aspects of pro-
ess monitoring and measurement. For example, it has capability
f acquiring chord-length-distribution (CLD) data and population
rends of particles in slurry on-line and in real time; there is
o need for sampling, dilution, separation or isolation that may
ontribute to changes in particle size and distribution due to break-

ge or agglomeration. The measurement principle of FBRM can
e found elsewhere (Greaves et al., 2008). It was shown that
nline CLD measurements might be enough for some processes
o monitor the process dynamic behaviors especially relevant to
SD, particle shape, concentration and rheological behavior of
harmaceutics 405 (2011) 63–78

fluid suspensions (Richmond et al., 1998). In recent years, FBRM
has been widely used for various pharmaceutical crystallization
studies such as process development at various scales, process
assessment, polymorphic transformation process monitoring, con-
trol of crystal product quality, nucleation kinetics study, process
screening, etc. (Togkalidou et al., 2004; Chew et al., 2007; Greaves
et al., 2008; Howard et al., 2009; Lindenberg and Mazzotti, 2009).
Those applications did adequately address the problems under
investigation. However, most of these applications followed a uni-
variate or change-one-variable-at-a-time approach. This univariate
approach may not be sufficient for handling the multi-factor rela-
tionships among formulation and process variables, and quality
attributes of crystal products, which are frequently encountered
during the pharmaceutical process design space development. As
discussed previously, an alternative multivariate approach may
provide insights about the complicated relationship and possible
interactions among the formulation variables, process variables,
and product quality attributes, as well as identifies critical pro-
cess variables which are essential for developing a pharmaceutical
process design space (FDA/ICH, 2006a, 2009). This multivariate
approach was used in this study.

Some models have been proposed to convert CLD to PSD
(Simmons et al., 1999; Langston and Jones, 2001; Hukkanen and
Brattze, 2003; Ruf et al., 2000; Li and Wilkinson, 2005). In spite
of having gained success in estimating the PSD from the CLD
data for some simple particulate systems in static mode, the
theory behind these methods require quite a few assumptions,
including that the particles perfectively backscatter light at all
angles and that all particles have a known regular shape. The
assumptions may not be valid for some particulate systems, espe-
cially for systems in dynamic mode, i.e., the particle evolution
processes during which particle concentration, morphology and
shape, and property are functions of time. A few works (Monnier
et al., 1996; Yu and Erickson, 2008) highlighted the limitations
of the laser reflection method and FBRM measurement. There-
fore, at the present time, using a first-principles approach alone
to handle either the FBRM measurement process or the rela-
tionship between CLD and PSD remains a significant scientific
challenge. Given that very limited real-time PSD measurement
technique is available for a direct side-by-side comparison, an
alternative approach, i.e., using an integrated PAT approach for
real-time FBRM process monitoring in conjunction with DOE
and MVDA, then checking the results from fundamental process
engineering knowledge and established theories for particulate
process, may constitute a practical option for pharmaceutical
particulate process characterization and process design space
development.

1.4. Risk-based approach to select variables for the DOE study

To realize the advantages of a holistic approach for a complex
process and make sure our limited resources are used efficiently
and effectively, a risk assessment tool was applied to brainstorm
and identify potential variables that can have an impact on the
desired quality attribute. In this work, a Fishbone diagram or
Ishikawa Diagram 1 was created to structure the process of identi-
fying possible causes that could have impacts on co-precipitation
process rate, as shown in Fig. 1.

Even though at a first glance six categories of factors (materi-
als, process, measurement, equipment, people, and environment)
could have impact on the co-precipitation process rate, in real-

ity of a research laboratory setting, a large number of factors
can actually be eliminated safely. For example, co-precipitation
formulation components selection and pre-dissolution in sol-
vent, co-precipitation vessel selection, errors due to operators
and analytical side, environmental variables, and measurement



H. Wu et al. / International Journal of Pharmaceutics 405 (2011) 63–78 65

ts on

v
o
f
i
i
k
s
i

1
d

n
2
t
g
p
b
w
n
F
c
w
f
t
p
p
o
t
t
t
f
b
i
i

Fig. 1. Fishbone diagram for effec

ariables, could be pre-specified in the study protocol based
n preliminary study thus be fixed during the study. There-
ore, with this risk mitigation and risk management strategy
n place, we could then focus our attention on evaluating the
mpact of main process variables or high risk variables (being
nown by prior knowledge, such as slurry temperature, slurry
tirring rate, and non-solvent addition rate, etc.) on process dynam-
cs.

.5. Rationale for co-precipitation process design space
evelopment

When developing a pharmaceutical design space, one ratio-
ale is to first identify critical process variables (Wu and Hussain,
005b; Wu and Khan, 2009; Xie et al., 2008) and interactions,
hen use good science and engineering practice to manage, miti-
ate, eliminate, and control the risk associated with process and
roduct variability to ensure the product quality is built in or
y design. In this work, naproxen, Eudragit L100, alcohol, and
ater were selected as the model drug, polymer, solvent, and
o solvent for the co-precipitation formulation components. A
BRM D600L system was used to monitor the co-precipitation pro-
ess in situ at real-time during the entire course of introducing
ater to the ternary system of naproxen–Eudragit L100–alcohol

or total of 27 batches based on a 33 factorial design. A 3D count-
ime-size plot was constructed to map the entire co-precipitation
rocess and identify distinguishable process stages. Derived co-
recipitation process kinetics was extracted to examine the impact
f main process variables on the process outcomes. DOE in conjunc-
ion with analysis of variance (ANOVA) was used as a screening
ool to identify the statistically significant variables and interac-

ions for the co-precipitation process. A linkage between various
ormulation and process variables and the derived process rates
ased on the change of CLD over time was then constructed. The

mpact of main process variables on final CLD was also exam-
ned.
the co-precipitation process rate.

2. Experimental

2.1. Materials and experimental protocol for a dynamic
co-precipitation process

Naproxen USP (lot no: NPX 368) was obtained from Albemarle
Corporation (Orangeburg, SC). Eudragit L100 (lot no: 1221203048)
was obtained from Röhm America Inc. (Somerset, NJ). Solvent
reagent alcohol (HPLC grade, lot no: 053546) was purchased
from Fisher Scientific (Fair Lawn, NJ). Non-solvent DI water was
obtained from a FDA in-house facility (Silver Spring, MD) and
was kept in refrigerator at 3 ◦C prior to use. All of these chem-
icals, solvent, and non-solvent were used without any further
processing or purification prior to the use for this experimental
work.

Our initial work examined the effects of drug/polymer ratio on
co-precipitation process (Wu and Khan, 2010b). In this work, the
drug/polymer ratio of 2 (4.0 g of naproxen and 2.0 g of Eudragit
L100) was selected due to the fact that nice co-precipitates
with regular morphology could be obtained via the dynamic
co-precipitation process designed in this work. In addition, this
allowed us to focus our attention on the main process vari-
ables. The naproxen and Eudragit were dissolved separately in
150 and 100 ml of reagent alcohol, respectively. These solutions
were then added to the 1 L reaction vessel of Chemglass reac-
tion kit (ChemGlass, Vineland, NJ) via a funnel. The stir speed was
set via the OptiChem digital overhead stirrer. The temperature
was set via the ThermoScientific Neslab RTE 740 thermoregula-
tor. The solution in the reaction vessel was allowed to reach the
pre-defined temperature prior to data acquisition. Once this tem-
perature had been achieved, real-time monitoring began using
the Lasentec FBRM system and PVM system, prior to any water

addition. After establishing a baseline, the first addition of water
(125 ml) kept at about 3 ◦C was made to the reaction vessel at
the pre-defined flow rate via a flexible tubing (Tygon R-3603,
Fisher Scientific), a MasterFlex solid state speed control device
(Chicago, IL), and a Cole-Parmer peristaltic pump (Chicago, IL).
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Fig. 2. Schematic

hen the co-precipitation system was allowed to come to equi-
ibrium over a period of 10 min, after which, the 2nd addition of

ater (50 ml) was made to the system. Depending on the tem-
erature of the individual experiment (15 ◦C, 25 ◦C, or 35 ◦C), the
ystem was introduced with water for the 3rd, 4th, and 5th addition
each time with 50 ml), respectively. The co-precipitation system
as allowed to reach equilibrium over a period of 10 min after

ach individual addition of water. To ensure both the experimental
onsistency and good dispersion of water to the ternary system,
he flexible tubing was kept vertically by two supporting claps
ttached to a lab frame. Furthermore, the end portion of the tub-
ng was immersed in the liquid phase during the entire course
f experiment. The schematic of experimental setup is shown in
ig. 2.

.2. Co-precipitation thermodynamics and crystal growth model

A traditional thermodynamics and kinetics study is out of
he scope of this work. Both naproxen and Eudragit L100
re soluble in alcohol but practically insoluble in water.
he literature data for the experimental and predicted sol-
bility of naproxen in water are 15.9 mg/L and 51.0 mg/L,
espectively (http://www.drugbank.ca/drugs/DB00788, accessed
n 09/03/2010). Due to the solubility difference in alcohol and
ater for both naproxen and Eudragit L100, introducing water

o the ternary system of naproxen–Eudragit L100–alcohol grad-
ally will lead to the movement of the overall composition
oint of 4 components system within the phase diagram accord-

ngly. The super-saturation will be generated gradually once the
verall composition point comes across the solid-liquid equilib-
ium line. Once a certain degree of super-saturation is attained,

phase change (nucleation event) will be initiated. Following
his initiation, the super-saturation generated previously will
e consumed by subsequent nucleation and/or co-precipitate
rowth process. In general, the nucleation rate per unit mass of
olvent may be expressed by the following semi-empirical equa-
ion:

= kb�j
k
�cb (1)
here B is nucleation rate, kb is nucleation rate con-
tant, �k is the kth moment of crystal size distribution,
c is concentration driving force, j and b are exponent of
agma density and nucleation order, respectively (Tavare,

987).
erimental set up.

As shown in Fig. 3, a multi-phase diffusion layer model was pro-
posed by Nyvlt et al. (1985) to describe the crystal growth process.
According to this model, the crystal growth process takes place via
the following steps:

(1) Bulk transfer: transfer of solute from the bulk solution to the
diffusion layer;

(2) Diffusion: diffusion of solute through the diffusion layer, whose
thickness depends on the hydrodynamic conditions in the solu-
tion;

(3) Surface integration: incorporation of the solute molecules into
the crystal lattice.

In this work, attempts were made to use the aforementioned
thermodynamics, kinetics, and Nyvlt’s multi-phase mass transfer
model (Nyvlt et al., 1985) to explain the experimental observations
and to link them with statistical data analysis results of the DOE
data sets.

2.3. Design of experiments (DOE), real-time process monitoring,
and data analysis

Based on risk assessment results from Section 1.4, three main
process variables (slurry temperature (◦C), slurry stirring rate
(rpm), non-solvent addition rate (ml/s)) were selected as indepen-
dent process variables in this study. Each factor was tested with
three levels. A 33 full factorial design was used for experiments as
shown in Table 1.

A FBRM D600L (Mettler-Toledo AutoChem, Columbia, MD) sys-
tem was used to monitor the dynamic co-precipitation process
in situ at real-time for a total of 27 batches based on a 33 factorial
design. The FBRM D600L system was set to collect CLDs in situ with
a laser speed of 2 m/s, applying the standard ‘F-electronic’ mode
and using measurement duration of 2 s. A Lasentec Particle Vision
Microscopy system PVM819 (Mettler-Toledo AutoChem, Columbia,
MD) was used to monitor the co-precipitation process in situ at real-
time for the selected batches, in order to obtain direct information
about the morphology and size of the co-precipitates evolved dur-
ing the course of adding water to the system. The PVM image was
acquired every 2 s.
A 3D count-time-size map was constructed to illustrate the
progress of a co-precipitation process and identify various distin-
guishable process stages. The impacts of main process variables on
the process characteristics such as derived co-precipitation pro-
cess rates and final CLD were assessed. ANOVA was conducted

http://www.drugbank.ca/drugs/DB00788
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Fig. 3. Nyvlt et al. diffusion

o identify statistical significant variables. General linear models
ere used for parameter estimate. Neural network algorithm was
tilized to link the process variables with response variables.

. Results and discussion

From a process engineering perspective, various process vari-
bles could impact thermodynamics, kinetics, and mass-transfer

f a co-precipitation process to various extents, depending on the
ombination of process conditions. Therefore, the effects of main
rocess variables on the co-precipitation process dynamics and
uality attributes of final co-precipitate slurry were examined sys-
ematically.

able 1
he 33 full factorial design for the co-precipitation study.

Run No Pattern X1 (◦C) X2 (rpm) X3 (ml/s)

1 133 15 400 6.66
2 213 25 50 6.66
3 312 35 50 3.66
4 132 15 400 3.66
5 331 35 400 0.83
6 123 15 200 6.66
7 323 35 200 6.66
8 221 25 200 0.83
9 313 35 50 6.66

10 222 25 200 3.66
11 321 35 200 0.83
12 212 25 50 3.66
13 311 35 50 0.83
14 131 15 400 0.83
15 211 25 50 0.83
16 332 35 400 3.66
17 223 25 200 6.66
18 112 15 50 3.66
19 122 15 200 3.66
20 231 25 400 0.83
21 232 25 400 3.66
22 121 15 200 0.83
23 233 25 400 6.66
24 322 35 200 3.66
25 113 15 50 6.66
26 111 15 50 0.83
27 333 35 400 6.66
model (Nyvlt et al., 1985).

3.1. A Typical profile of FBRM counts/s in a specific chord length
range vs. time during a co-precipitation process

A typical profile of FBRM counts/s in a specific chord length
range vs. time was presented in Fig. 4. The following chord
length (CL) range codes were used throughout this paper: CL1:
0–10 �m; CL2: 10–19.953 �m; CL3: 19.953–50.119 �m; CL4:
50.119–100 �m; CL5: 100–251.189 �m. The water was added three
times with a time interval of approximately 10 min. A relative small
increase of counts was observed after the initial addition. A large
increase of counts was observed after the 2nd addition. However,
the increases of counts at various CL ranges were not uniform. The
most dominant increase occurs at CL3; the 2nd largest increase
occurs at CL2 and CL4. After the 3rd addition, only a small increase
of counts was observed. Therefore, the data for the 3rd addition
of water were not included in further analysis. This non-uniform
increase phenomenon was observed almost universally for most
of the rest 26 batches with different combinations of process vari-
ables.

3.2. 3D count-time-size plot of the dynamical co-precipitation
process

In order to examine the co-precipitation process progress, a
3D map of count-time-size can provide visualization of the co-
precipitation process dynamics as a function of time. In addition,
it can illustrate the process progress and distinguish various pro-
cess stages (Wu and Khan, 2010a), as shown in Fig. 5(a) and (b) (for
process runs 132 and 123).

It was found for most runs, the 3D maps consist of three
stages: (1) incubation period when there was no significant particle
counts detected, its time length depending on the combinations of
process conditions; (2) transition period when significant nucle-
ation and growth occurs thus significant counts were detected;
(3) steady state when the number of counts per second for

small chord length ranges (CL1 and CL2) remains relatively con-
stant throughout the remainder of the process, which indicates
no significant nucleation occurs. In the CL3 range, there is a
slight increase after the 2nd addition of water and a slight
decrease after the 3rd addition of water for run 132; there is a
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Fig. 4. A typical profile of

light decrease after the 2nd and 3rd addition of water for run
23.

.3. Derived process rates for a co-precipitation process during
he transition period

Although CLD is a relative value, it can be used to represent the
rocess characteristics of a particulate system because it depends
n both PSD and shape of the particles (both are a function of pro-
ess time). A recent report (Ma et al., 2009) demonstrated that the
rystal mean chord length (MCL) measured by FBRM can be con-
erted successfully to the crystal mean size (MS) measured by a
igital photo-technique. It verifies the reliability of the FBRM data.

Based on the profile of the FBRM counts/s vs. time at specific
L range during the transition period, a new procedure was devel-
ped in this work to derive the co-precipitation process rates from
BRM counts/s vs. time profiles. The slopes were based on the FBRM
ounts/s over time in five different CL ranges. They were calculated
y (1) first identifying the general time range where the maximum
lope occurred for a given size range during a single addition; (2)
hen calculating the slope of that CL range over the preceding 20 s
or each individual time point within that CL range; (3) the maxi-

um of these calculated slope values for each addition and each CL
ange was used as the derived co-precipitation process rate for the
orresponding process conditions at specific single addition and CL
ange. Following this procedure, the slope of BBRM counts/s over
ime for each run after each addition of water was obtained. The fol-
owing derived process rate codes were used throughout the paper:
ate1, Rate2, Rate3, Rate4 are corresponding to the derived rates

t CL1, CL2, CL3, and CL4 after the 1st water addition; Rate5, Rate6,
ate7, Rate8 are corresponding to the derived rates at CL1, CL2,
L3, and CL4 after the 2nd water addition. These derived process
ate data as the designated response variable values were listed in
able 2. For each run and addition, a plot of the derived process rate
s. time for batch run 111.

vs. CL range was made. Fig. 6 is one example of such a plot, which
represents a typical bell-shape distribution. As discussed below,
this newly derived parameter was used to characterize the dynamic
transition behaviors of nucleation and growth of co-precipitates
after water addition, based on 2D count-time information for each
CL range.

3.4. Exceptions for the derived process rate distributions over CL
for runs 132 and 133

It reveals that for the majority of the 27 runs the plot of derived
process rate vs. CL range has a bell-shape distribution with the max-
imum derived process rate occurring at the CL3. However, there are
two exceptions for runs 132 and 133. At the 2nd addition of water,
as shown in Fig. 7, these two runs first displayed a plateau of derived
process rate over the CL range of [0, 50.12] �m, then followed by a
sharp decreasing over the CL range of [50.12, 251.18] �m.

In these two cases, a combination of a lowest temperature
(15 ◦C), highest stirring rate (400 rpm), and moderate to high addi-
tion rate of water was used. The lowest temperature may provide
sufficient super-saturation as the thermodynamic driving force,
which eliminates the possibility of the process being thermody-
namic control. From the transport process perspective, the highest
stirring rate may facilitate two sequential mass-transfer steps: bulk
transfer and diffusion through the diffusion layer whose thickness
is inversely proportional to the stirring intensity. Therefore, accord-
ing to Nyvlt diffusion layer model (Nyvlt et al., 1985), the most likely
rate-limiting step for this multi-phase transfer process could be the
surface integration, i.e., the integration of species onto the nuclei or

crystal’s surface, which is unlikely depending on the particle size.
Therefore a more uniform derived process rates were obtained for
runs 132 and 133 at the 2nd addition of water, compared to the
bell-shape rate distributions for runs with other combinations of
process variables.
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.5. CLD at the end of steady state period

To characterize the effects of main process variables on the
teady state, the CLDs at the end of steady state of the 27 runs were
lotted. Fig. 8 is a representative example for runs 131, 231, and
31. All of the CLDs have bell shapes. As characteristic parameters
f this bell-shaped CLD, its mode and peak frequency were taken
s additional designated response variables and listed in the last
ection of Table 2.

.6. Analysis of variance (ANOVA) and general linear modeling
or both transition period and steady state period

Statistical data analysis and general linear modeling were per-
ormed on data from both transition period and steady state period

o determine: (1) if there are any relationships between the process
ariables and the slopes at various CL ranges between [0, 100] �m
uring the transition period; and (2) if there are any relationships
etween the process variables and the quality attributes of the final
o-precipitate slurry at the end of steady state period.

Fig. 6. Typical profiles of the derived process rate vs. chord length range for batch
runs 111, 112, and 113.
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ig. 7. Profiles of the derived process rate vs. chord length range for the 2nd water
ddition of runs 132 and 133.

.6.1. ANOVA for the DOE results of the co-precipitation process:
dentifying critical process variables and interactions

Let X1, X2, and X3 be the slurry temperature, stirring rate, and
ater addition rate for the 33 full factorial design, respectively.
ith 27 runs of 33 factorial design of experiment, the ANOVA indi-

ates that all main effects and two-way interactions among these
ain effects are estimable and the three-way interaction is used to

stimate the underlying error. Therefore, the following statistical
odel was used:

= � + ˛ + ˇ + � + (˛ˇ) + (˛�) + (ˇ�) + ε
ijk i j k ij ik jk ijk

= 1, 2, 3, j = 1, 2, 3, k = 1, 2, 3 (2)

here yijk is the observation (either derived process rate value,
ode, or peak frequency) in the ith level of variable X1 and the jth

able 2
erived process rates during transition and final CLD parameters at the end of steady sta
L2: 10–19.953 �m; CL3: 19.953–50.119 �m;CL4: 50.119–100 �m).

Run # Pattern During the transition period (Rate: counts/s/s)

After the 1st addition of water After th

Rate1 Rate2 Rate3 Rate4 Rate5

1 133 10.5736 10.7710 10.5172 1.6980 24.6889
2 213 2.2180 3.9841 8.4474 0.8013 1.4502
3 312 0.3826 0.4129 0.9374 0.6608 5.2500
4 132 2.7907 3.4472 4.2661 1.1092 29.2702
5 331 1.6878 1.2320 2.7800 1.3865 2.8786
6 123 17.4587 14.5936 12.1450 0.9303 31.2612
7 323 1.2708 2.1529 3.9911 2.0179 6.3940
8 221 0.8667 1.2557 3.3192 1.2608 0.7273
9 313 0.3736 0.6492 0.9462 0.7991 1.8012

10 222 4.7627 5.3115 5.7942 0.3398 12.8510
11 321 1.0028 1.4100 3.4853 1.6461 1.7586
12 212 16.8696 28.8235 59.4750 4.7923 10.3219
13 311 0.5023 0.5972 1.4905 0.9732 0.9189
14 131 2.4071 3.3990 3.2181 0.5674 9.6399
15 211 0.2351 0.3937 0.9423 0.2103 1.0915
16 332 4.2665 5.7420 8.6329 2.5536 5.8941
17 223 5.4219 6.9866 8.5837 0.4530 10.4084
18 112 20.9567 30.1534 62.3363 8.2928 17.1882
19 122 3.8570 0.1250 0.1682 0.0324 14.4302
20 231 1.0080 0.6780 1.0058 0.7622 9.3001
21 232 0.8753 0.5902 0.8450 1.0472 12.5681
22 121 4.3244 6.5958 10.1978 1.0433 5.3310
23 233 1.5458 1.4770 1.7359 0.4937 11.0354
24 322 0.8057 1.4403 2.7305 1.3534 3.8065
25 113 17.8998 26.7439 50.1879 5.4916 2.2388
26 111 1.2927 2.2658 4.0293 0.5283 3.5820
27 333 11.7237 16.2410 26.0520 3.6388 5.0155
Fig. 8. A typical CLD at the end of steady state period for runs 131, 123, and 331.

level of variable X2 and the kth level of variable X3, � is the overall
mean, ˛i is the ith X1 effect, ˇj is the jth X2 effect, �k is the kth X3
effect, (˛ˇ)ij is the two-way interaction between the ith X1 effect
and the jth X2 effect, (˛�)ik is the two-way interaction between the
ith X1 effect and the kth X3 effect, (ˇ�)jk is the two-way interac-
tion between the jth X2 effect and the kth X3 effect, εijk, the random
error, is normally independently identically distributed with mean
0 and variance �2, which is written as εijk ∼ iid N(0, �2).

Based on this statistical model, ANOVA was conducted to screen
significant factors and interactions. The screening results were

listed in Table 3. As shown in the last column of Table 3, at sig-
nificance level ˛ = 0.05, X1 and X3 are statistically significant for
both Rate1 and Rate7; X1, X2, and X3 are statistically significant
for Rate5, Rate6, Rate8, and peak frequency; X1 and X2 are statis-

te for the 27 co-precipitation runs based on real-time FBRM data (CL1: 0–10 �m;

At the end of steady state period

e 2nd addition of water Mode (�m) Peak frequency
(counts/s)

Rate6 Rate7 Rate8

22.4311 21.5892 3.7845 27.123 305.72
3.1170 8.1841 2.4616 46.416 91.581
2.9591 4.9887 2.3592 54.117 46.169

28.5301 26.8955 3.8570 25.119 270.67
1.8109 3.3692 1.5301 42.987 60.755

38.0034 55.6426 5.0592 31.623 392.19
7.0410 11.3126 4.9157 39.811 109.45
0.9842 0.4499 1.5104 46.416 92.221
2.9355 5.7506 2.0944 54.117 59.715

17.5157 35.4949 9.5555 36.869 254.68
3.0196 4.7413 2.2973 39.811 87.882

10.9985 27.4774 4.0631 36.869 260.91
1.2675 2.4570 1.2153 50.119 34.156
9.4964 15.6298 3.2423 34.145 205.99
1.8768 5.8460 2.7091 50.119 88.607
6.4683 11.9191 4.6014 34.145 127.26

15.8936 34.5608 7.6965 34.145 252.77
18.1251 36.7147 5.7329 31.623 285.74
22.9464 35.9995 9.6199 34.145 292.63
10.1723 17.7417 5.2822 31.623 155.29
14.7266 26.3863 7.0553 31.623 171.35

6.1365 7.4282 2.6867 31.523 243.11
14.8249 31.6042 7.8285 29.286 203.1

4.0625 9.3274 3.4756 39.811 82.84
2.7659 6.1132 2.1597 36.869 201.59
4.1017 10.2035 3.0273 34.145 131.14
4.0808 8.1521 4.4261 36.869 159.24
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Table 3
33 full factorial design analysis results using ANOVA.

Process period Dependent Hypothesis type Source Degree of freedom Mean sum of squares F-value P-value Statistically
significant
variables or
interactions
(˛ = 0.05)

During the
transition period
after the 1st
water addition

Rate1 (counts/s/s) 3 X1 2 110.47 7.07 0.0171 X1, X3

3 X2 2 18.83 1.20 0.3491
3 X1 × X2 4 39.68 2.54 0.1222
3 X3 2 92.47 5.91 0.0265
3 X1 × X3 4 36.30 2.32 0.1445
3 X2 × X3 4 40.59 2.60 0.1169

Error 8 15.64
Rate2 (counts/s/s) 3 X1 2 137.04 3.28 0.0909

3 X2 2 101.69 2.44 0.1491
3 X1 × X2 4 99.44 2.38 0.1376
3 X3 2 143.94 3.45 0.0831
3 X1 × X3 4 51.22 1.23 0.3718
3 X2 × X3 4 98.39 2.36 0.1403

Error 8 41.73
Rate3 (counts/s/s) 3 X1 2 319.39 1.99 0.1988

3 X2 2 667.69 4.16 0.0577
3 X1 × X2 4 433.02 2.70 0.1083
3 X3 2 410.36 2.56 0.1385
3 X1 × X3 4 144.15 0.90 0.5079
3 X2 × X3 4 415.61 2.59 0.1174

Error 8 160.48
Rate4 (counts/s/s) 3 X1 2 2.52 1.42 0.2965

3 X2 2 5.28 2.97 0.1083
3 X1 × X2 4 6.78 3.81 0.0508
3 X3 2 4.02 2.26 0.1662
3 X1 × X3 4 1.77 0.99 0.4635
3 X2 × X3 4 4.68 2.63 0.1135

Error 8 1.78

During the
transition period
after the 2nd
water addition

Rate5 (counts/s/s) 3 X1 2 309.33 14.60 0.0021 X1, X2, X3

3 X2 2 126.28 5.96 0.0260
3 X1 × X2 4 27.09 1.28 0.3545
3 X3 2 178.10 8.40 0.0108
3 X1 × X3 4 34.02 1.61 0.2633
3 X2 × X3 4 50.11 2.36 0.1396

Error 8 21.19
Rate6 (counts/s/s) 3 X1 2 392.97 15.94 0.0016 X1, X2, X3

3 X2 2 161.23 6.54 0.0208
3 X1 × X2 4 32.78 1.33 0.3382
3 X3 2 242.58 9.84 0.0070
3 X1 × X3 4 44.51 1.81 0.2211
3 X2 × X3 4 58.02 2.35 0.1409

Error 8 24.66
Rate7 (counts/s/s) 3 X1 2 748.06 10.27 0.0062 X1, X3

3 X2 2 216.60 2.97 0.1082
3 X1 × X2 4 51.73 0.71 0.6075
3 X3 2 666.40 9.15 0.0086
3 X1 × X3 4 74.00 1.02 0.4540
3 X2 × X3 4 205.60 2.82 0.0988

Error 8 72.84
Rate8 (counts/s/s) 3 X1 2 12.64 7.27 0.0159 X1, X2, X3

3 X2 2 13.28 7.63 0.0140
3 X1 × X2 4 2.94 1.69 0.2440
3 X3 2 20.44 11.75 0.0042
3 X1 × X3 4 2.33 1.34 0.3355
3 X2 × X3 4 4.60 2.64 0.1129

Error 8 1.74

At the end of
steady state (end
of the
co-precipitation
process)

Mode (�m) 3 X1 2 309.70 19.14 0.0009 X1, X2

3 X2 2 289.37 17.88 0.0011
3 X1 × X2 4 35.00 2.16 0.1640
3 X3 2 38.63 2.39 0.1538
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Table 3 (Continued)

Process period Dependent Hypothesis type Source Degree of freedom Mean sum of squares F-value P-value Statistically
significant
variables or
interactions
(˛ = 0.05)

3 X1 × X3 4 9.30 0.57 0.6892
3 X2 × X3 4 12.76 0.79 0.5640

Error 8 16.18
Peak frequency (counts/s) 3 X1 2 67733.69 38.49 0.0001 X1, X2, X3

3 X2 2 11171.37 6.35 0.0223
3 X1 × X2 4 1324.77 0.75 0.5834
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Error

ically significant for mode. No statistically significant variables or
nteractions were found for Rate2, Rate3, and Rate4.

To fully realize the values of DOE and ANOVA methodologies
nd overcome the inherent limitations of empirical data-driven
odels, fundamental formulation and process domain knowledge
ere used to facilitate the interpretations of the statistical data

nalysis results. Doing so may help to bridge the gaps between the
ata-driven models, mechanistic models, and first-principle mod-
ls of the process. As a case study, effort was made throughout this
ork to link the ANOVA results to particulate process engineering
rinciples.

For the initial addition during transition period, only X1 and
3 stand out as critical process variables to the derived co-
recipitation process rate for the smallest CL range of [0, 10] �m
hich is most likely related to the nucleation process. Since X1 is
irectly related to the degree of super-saturation (S) as discussed in
ection 3.6.2.1, X3 is directly related to the creation of S in the co-
recipitation vessel, the ANOVA results for the 1st water addition
uggest that the initial nucleation process is thermodynamically
ontrolled. No statistically significant process variables and interac-
ions were found from ANOVA at other CL ranges after the 1st water
ddition. This suggests that the competition among various pro-
ess mechanisms (such as thermodynamics for super-saturation
reation, nucleation kinetics, and multi-phase mass transfer, etc.)
s at such state that none of them becomes dominant.

For the 2nd addition during the transition period, all of three
rocess variables (X1, X2, and X3) stand out as critical variables to
ate5, Rate6, and Rate8. This may suggest all of three process vari-
bles can contribute directly to the co-precipitation process rates at
L5, CL6, and CL8. X1 and X3 stand put as critical process variables
o Rate7, which may suggest both the thermodynamic factor (X1)
nd a mass-transfer factor (X3) are playing equally important role.

At the end of steady state of the co-precipitation process, X1
nd X2 are critical process variables to the mode of the final
LD. This suggests both the thermodynamic factor (X1) and mass-
ransfer factor (X2) are most influential to the particle size of the
nal co-precipitate slurry. X1, X2, and X3 are critical process vari-
bles to the peak frequency of the final CLD. This suggests that all
f the main process variables directly contribute to the number
f counts generated. Therefore, the ANOVA results for the char-
cteristic parameters of the final CLD demonstrated the critical
mportance of process control (i.e., controlling process parame-
ers as studied in this work) to achieve the desired product quality
ttributes at the end of the co-precipitation process.
.6.2. Development of statistical predictive models using general
inear modeling

Based on the screening results of statistically significant process
ariables as highlighted in the last column in Table 3, further statis-
ical analyses were carried out using general linear models (GLM).
17368.57 9.87 0.0069
2307.88 1.31 0.3438
3597.69 2.04 0.1807
1759.65

The general linear models and parameters’ estimations are listed
in Table 4.

To illustrate the GLM model formulation, let us discuss the linear
model for Rate1.

(Rate1)i = ˇ0 + ˇ1(X1)i + ˇ3(X3)i + εi, i = 1, . . . , 27, (3)

where (Rate1)i is the ith observation of Rate1, (X1)i and (X3)i are
the ith values for X1 and X3, respectively, error term εi is normally
independently identically distributed with mean 0 and variance �2,
which is written as εi ∼ iid N(0, �2), i = 1, . . ., 27. The GLM modeling
was carried out using SAS9.2. The modeling results were summa-
rized in Table 4. From the parameter estimate listed in the 5th and
6th columns, it is easily appreciated that the effects of main process
variables on derived process rates, mode and peak frequency of the
final CLD have certain trends as discussed below.

3.6.2.1. Slurry temperature (X1). It has a significant effect (at sig-
nificance level ˛ = 0.05) on the derived process Rate1, Rate5, Rate6,
Rate7, and Rate8. Furthermore, since parameter ˇ1 estimate is neg-
ative for these rates, the lower slurry temperature will result in
greater derived process rates. This could be explained from a ther-
modynamic point of view. Theoretically, X1 could directly impact
the super-saturation within reaction vessel. Since the solubility of
co-precipitate is a function of X1, change of X1 will lead to a change
of solubility. Consequentially, the degree of super-saturation (S)
will be changed accordingly:

S = C − Cs

Cs
(4)

where C stands for the actual concentration of a substance or
species in the solution, Cs the saturated concentration determined
by its solubility. Thus, when C remains constant, a lower X1 will lead
to a smaller Cs (when the temperature coefficient of Cs is positive,
as in most cases) or a larger Cs (when the temperature coefficient
of Cs is negative, as occasional case), which in turn will lead to a
greater thermodynamic driving force �C = C − Cs. According to Eq.
(1), it will lead to a greater co-precipitation rate, thus more counts/s
will be generated.

On the other hand, X1 was a significant factor (at significance
level ˛ = 0.05) on mode of final CLD at the end of steady state.
However, parameter ˇ1 estimate is positive for mode. Therefore,
the lower slurry temperature will result in smaller mode or finer
co-precipitate crystal.

3.6.2.2. Slurry stirring rate (X2). It was a significant factor (at signifi-

cance level ˛ = 0.05) for Rate5 and Rate6. The parameter ˇ2 estimate
is positive for Rate5, Rate6, and Rate8. This indicates that a higher
X2 will result in a higher Rate5, Rate6, and Rate8. This trend is
likely attributed to the possible mixing effect caused by stirring,
as discussed below.
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Table 4
Development of statistical predictive models using general linear modeling.

Process period Response
variable

Model Coefficient of
correlation, r

Parameter Estimate Standard error t-value P-value

Transition period
after the 1st
water addition

Rate1
(Rate1)i = ˇ0 + ˇ1(X1)i + ˇ3(X3)i + εi

εi∼N(0, �2)
0.595

ˇ0 5.09 1.02 5.01 <0.0001

ˇ1 −3.31 1.24 −2.66 0.0138
ˇ3 3.06 1.24 2.46 0.0214

Transition period
after the 2nd
water addition

Rate5
(Rate5)i = ˇ0 + ˇ1(X1)i + ˇ2(X2)i + ˇ3(X3)i + εi

εi∼N(0, �2)
0.751

ˇ0 8.93 1.14 7.85 <0.0001

ˇ1 −5.77 1.39 −4.15 0.0004
ˇ2 3.69 1.39 2.65 0.0143
ˇ3 3.28 1.39 2.36 0.0273

Rate6
(Rate6)i = ˇ0 + ˇ1(X1)i + ˇ2(X2)i + ˇ3(X3)i + εi

εi∼N(0, �2)
0.748

ˇ0 10.23 1.29 7.96 <0.0001

ˇ1 −6.61 1.57 −4.19 0.0003
ˇ2 3.58 1.57 2.27 0.0328
ˇ3 4.01 1.57 2.55 0.0180

Rate7
(Rate7)i = ˇ0 + ˇ1(X1)i + ˇ3(X3)i + εi

εi∼N(0, �2)
0.631

ˇ0 17.26 2.19 7.87 <0.0001

ˇ1 −8.57 2.68 −3.19 0.0039
ˇ3 6.39 2.68 2.38 0.0256

Rate8
(Rate8)i = ˇ0 + ˇ1(X1)i + ˇ2(X2)i + ˇ3(X3)i + εi

εi∼N(0, �2)
0.511

ˇ0 4.23 0.42 10.15 <0.0001

ˇ1 −0.68 0.51 −1.33 0.1956
ˇ2 0.88 0.51 1.72 0.0994
ˇ3 0.94 0.51 1.84 0.0786

At the end of
steady state
period

Mode
(mode)i = ˇ0 + ˇ1(X1)i + ˇ2(X2)i + εi

εi∼N(0, �2)
0.854

ˇ0 37.83 0.83 45.76 <0.0001

ˇ1 5.86 1.01 5.79 <0.0001
ˇ2 −5.64 1.01 −5.57 <0.0001

Peak
frequency

(peak)i = ˇ0 + ˇ1(X1)i + ˇ2(X2)i + ˇ3(X3)i + εi

εi∼N(0, �2)
0.856

ˇ0 172.84 10.07 17.16 <0.0001
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et al., 1985), the apparent overall derived process rates covering the
three steps of multi-phase mass transfer process are faster.

X2 was a significant factor (at significance level ˛ = 0.05) for both
mode and peak frequency of the final CLD at the end of steady state.
First of all, X2 is directly linked to the fluid hydrodynamics and
ow field within the vessel which could impact both the concen-
ration distributions of the drug and polymer and mass-transfer
rocess in the co-precipitation vessel. Secondly, it impacts the mag-
itude and functionality of the coagulation kernel (Randolph and
arson, 1988) that describes the rate at which particles collide
nd coalesce, which will be entered into the particle population
alance of the co-precipitation process. From a fluid dynamics
erspective, local and mean values of the specific power input
aused by the rotation speed of the impeller determine the degree
f macro-mixing and micro-mixing. The bulk mixing inside the
o-precipitation vessel must be ensured that its elements partic-
pate equally in the mass transfer process and hence the entire
olume is sufficiently utilized. In addition to this bulk mixing, suf-
cient micro-mixing has to be present in the vicinity of contacting
one where water is introduced and fed to the slurry via the feed
nlet, in order to even out quickly any local super-saturation peaks
enerated due to relatively fast addition of water and relatively
low stirring rate. Thermodynamically, during the initial addition
f water, super-saturation is expected to be generated in the vicin-
ty of contacting zone where water is introduced into the solution
nd is in contact with the solution, as soon as the overall composi-
ion point of the 4 component system comes across the meta-stable

ine. Visual evidence along with the results from online turbidity

onitoring (Wu and Khan, 2009) of the co-precipitation process
ave supported this theoretical analysis. Therefore, a lower X2 may
ot be strong enough to guarantee an effective mixing at both
acro and micro level. On the other hand, a higher X2 could pro-
ˇ1 −86.74 12.33 −7.03 <0.0001
ˇ2 25.54 12.33 2.07 0.0498
ˇ3 37.57 12.33 3.05 0.0057

mote micro-mixing in the vicinity of contact zone thus reduce the
super-saturation there. Furthermore, a higher X2 can facilitate mass
transfer process including both bulk transfer and diffusion across
the diffusion layer. Therefore, according to the Nyvlt’s model (Nyvlt
Fig. 9. Neural network modeling framework for Rate1–4.
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Table 5
Neural Network models’ performance summary.

Process period Response variable SSE RMSE SSE scaled RMSE scaled R2

After the 1st water addition during
the transition period

Rate1 (counts/s/s) 19.7528 0.9267 0.4963 0.1469 0.9809

Rate2 (counts/s/s) 54.0231 1.5326 0.6703 0.1707 0.9742
Rate3 (counts/s/s) 151.4385 2.5660 0.4891 0.1458 0.9812
Rate4 (counts/s/s) 6.2611 0.5217 1.7930 0.2792 0.9310

After the 2nd water addition during
the transition period

Rate5 (counts/s/s) 86.5533 1.9399 1.2218 0.2305 0.9530

Rate6 (counts/s/s) 121.0679 2.2943 1.3498 0.2422 0.9481
Rate7 (counts/s/s) 587.4973 5.0540 2.9544 0.3584 0.8864
Rate8 (counts/s/s) 11.6128 0.7106 2.0667 0.2998 0.9205

At the end of steady state period Mode (�m) 99.5207 2.0801 1.5845 0.2625 0.9391
4200
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Peak frequency (counts/s) 1

here: SSE: residual sum of squares error; MSE: mean squared error, which is the
f freedom; and RMSE: square root of the MSE and estimates the standard deviatio

owever, the parameter ˇ2 estimate is negative for mode but pos-
tive for peak frequency. This indicates that higher stirring rate will
ead to smaller particles but more counts in its final CLD.

.6.2.3. Addition rate of water (X3). It has a significant effect (at sig-
ificance level ˛ = 0.05) on Rate1, Rate5, Rate6, and Rate7, with a
igher X3 resulting in a greater derived process rate, as indicated

y the GLM modeling results (the parameter ˇ3 estimate is pos-

tive). Similar trend was observed for the derived process Rate8
lthough it did not meet the significance criteria. This trend could
e explained by the generation of super-saturation and the re-
istribution of various species in the vicinity of contacting zone.

Fig. 10. Plot of actual responsible variable values vs. predicted response variable va
.851 24.8481 1.5675 0.2611 0.9397

te of the variance of the residual error and equals to the SSE divided by the degree
e residual error.

Firstly, the addition of water into the slurry system will directly
change the concentrations of various species, which in turn will
change the degree of super-saturation in the vicinity of contact-
ing zone; secondly, it indirectly impacts the re-distribution of
various species within the vessel. The generation rate of super-
saturation in the vicinity of contacting zone due to a faster X3
could be larger than the consumption rate of the super-saturation

due to micro-mixing caused by the stirring. Therefore, a trend
of a higher X3 leading to a greater derived process rate was
observed.

Similar trend was observed for peak frequency of the
final CLD at the end of steady state of the co-precipitation

lues via neural network models. (a) Rate1; (b) mode; and (c) peak frequency.
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ig. 11. a–f PVM images right before and right after the 2nd addition of water to t
un 113 (before); (d) run 113 (after); (e) run 131 (before); and (f) run 131 (after).

rocess, although it did not meet the significance crite-
ia.

.7. Neural network modeling for both transition period and
teady state period

Table 4 shows that GLM modeling based on selection results of
tatistically significant process variables provided a good param-
ter estimate. The GLS parameter estimate enabled us to find
ut the trends about the effects of each critical process vari-

ble on both the derived process rates during transition period
nd characteristic quality parameters of CLD at the end of steady
tate period. It was also able to explain the variability for each
esponse variable to a large extent, with coefficient of correla-
ion r from 0.511 to 0.856. As shown by screening results in
precipitation system for various runs. (a) Run 111 (before); (b) run 111 (after); (c)

Table 3, there are certain two-way interactions existing, although
not necessarily statistically significant at significance level ˛ = 0.05.
Therefore, there is certain nonlinearity for the co-precipitation
process. This is expected due to the fact that the dynamic co-
precipitation process involves process thermodynamics, kinetics,
mass-transfer, and other transfer phenomena, many process fac-
tors and material attributes could contribute to the overall process
kinetics in a very complicated fashion. The ANOVA and GLM
results in this work demonstrated that, while only focusing on
statistically significant variables and interactions, it is expected

that GLM may generate coefficient of correlation r with some
deviation from 1.0 due to the complexity of the co-precipitation
process.

Among various multivariate techniques, neural network algo-
rithm has the capability of handling nonlinearity (Despagne and
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assart, 1998) between the independent variables and response
ariables. Therefore, a neural network (NN) algorithm imple-
ented in JMP 7.0 software was utilized to examine if the
odeling’s R2 values can be improved. Furthermore, neural net-
ork algorithm was applied to construct the linkage between the

hree normalized process variables and response variables that
nclude derived process rates at transition stage and mode and peak
requency of CLD at the end of steady state.

As an example, the NN framework was shown in Fig. 9 for Rate1.
ur modeling results show that the NN was able to generate quan-

itative models with decent correlation coefficients, as shown in
able 5. Most of the R2 values are pretty high (0.88–0.98), Further-
ore, the predicted response variable values agree well with the

ctual response variable values, as demonstrated in Fig. 10(a)–(c)
hich are examples for derived process Rate1 at transition period,
ode and peak frequency of CLD at the end of steady state period,

espectively.
In summary, our NN modeling results suggest that quantitative

orrelations between the process variables and the derived process
ate based on Lasentec FBRM CLD vs. time profile do exist. There-
ore, it is possible to utilize these quantitative correlations for better
rocess design and process control.

.8. PVM images evidenced nucleation and crystal growth during
he dynamic course of adding water

The profile of FBRM counts/s vs. time stands for the real-time
hord length statistics for slurry population under scrutiny of the
BRM probe. The PVM images provide direct evidences on morphol-
gy and size of individual particles under scrutiny of the PVM probe
t corresponding time point. Therefore, statistically speaking, the
VM data should reveal some sample information of the slurry pop-
lation under investigation. A recent report (Greaves et al., 2008)
ad shown that the PVM can be used as a direct visual method to
est the reliability of the FBRM results. In addition, data acquired
ia those two techniques should be complementary to each other.
herefore, it would be interesting to examine the linkage between
he FBRM data and PVM images.

In this work, 6 co-precipitation runs were selected for in-situ
eal-time monitoring using PVM during the entire course of co-
recipitation process. First of all, it demonstrated that for most
ases, no appreciable sizes of particles were detected via PVM
efore and immediate after the 1st addition of water to the ternary
ystem. However, about 10 min after the 1st addition of water (the
ime interval between each addition was ca. 10 min), right before
he 2nd addition of water, co-precipitates with appreciable sizes
ere detected via PVM. This is qualitatively consistent with what

BRM data revealed that relative fewer counts of fine particles
ere detected after the 1st addition of water. Secondly, significant

ncreases were observed via PVM for both the number and dimen-
ions of the co-precipitates before and right after the 2nd addition
f water, as shown in Fig. 11(a)–(f). Again, this is qualitatively con-
istent with what FBRM indicated that significant counts at various
L ranges were detected after the 2nd addition of water. In addition
o this enlargement phenomenon which was expected, the follow-
ng interesting facts were also observed: (1) for run with stirring
ate of 400 rpm, the co-precipitates have needle-like morphology;
2) for runs with stirring rate of 50 rpm, the co-precipitates have
oth needle-like and rectangular prism morphologies. Some co-
recipitates are attached to each other. The rectangular prisms
sually are shorter than those needle-like co-precipitates in length.
During each addition of water, size changes of the co-precipitate
n both length and width dimensions are appreciable via PVM
mages. As a first approximation, estimation was made based on
he surrogated data from the limited PVM images, as shown in
ig. 12. It demonstrated the trends of the dimension changes of
Fig. 12. Estimated average co-precipitate sizes for before and after the 2nd addition
of water to the co-precipitation system based on PVM images.

co-precipitates at both length and width dimensions during the
course of a co-precipitation process.

3.9. Discussion from a regulatory science perspective

ICH Q8(R2) (FDA/ICH, 2009) defines the design space as “The
multidimensional combination and interaction of input variables
(e.g., material attributes) and process parameters that have been
demonstrated to provide assurance of quality. Working within the
design space is not considered as a change. Movement out of the
design space is considered to be a change and would normally ini-
tiate a regulatory post-approval change process.” In addition to
identifying the main process variable effects, multi-factorial DOE
study as conducted in this work permits the quantification of vari-
able interactions. The information on the presence or absence of
interactions might be valuable for process optimization, identify-
ing cause of variability, or informing a failure modes and effects
analysis (FMEA) for defining a design space. “A design space can be
developed at any scale. The applicant should justify the relevance of
a design space developed at small or pilot scale to the proposed pro-
duction scale manufacturing process and discuss the potential risks
in the scale-up operation. If the applicant proposes the design space
to be applicable to multiple operational scales, the design space
should be described in terms of relevant scale-independent param-
eters.” (FDA/ICH, 2009). As a proof-of-concept, this simplified case
study was mainly focused on the effects of process variables while
keeping other variables fixed based on risk analysis and initial for-
mulation development results. It is important to keep in mind that
other variables such as formulation variables can certainly play vital
roles during process characterization and design space develop-
ment. Based on the GLM modeling results, both 2D and 3D contour
plots were made for certain response variables of the dynamic co-
precipitation process, such as Rate7 for the transition period and
mode obtained at the end of steady state period, as shown in Figs.
13(a), (b) and 14(a), (b), respectively. Fig. 13(a) and (b) demon-
strated that maximum Rate7 was obtained around the following
process window: −1 < X1 < 0.1, −0.25 < X3 < 0.95. Fig. 14(a) and (b)
demonstrated that maximum mode was obtained around the fol-
lowing process windows: 0.5 < X1 < 1, −1 < X2 < −0.5.

As demonstrated in this and previous works, process knowl-

edge and in-depth process understanding are essential to establish
appropriate process control strategy and operational space, such
that co-precipitation product with desired quality attributes and
properties (such as PSD, morphology, etc.) could be achieved even-
tually. Therefore, they are key elements for developing appropriate
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Fig. 13. Contour plots for Rate7 at the transition period as a function of critical variables X1 and X3, based on GLM modeling results. (a) 2D contour plot; and (b) 3D contour
plot.
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ig. 14. Contour plots for mode at the end of steady state as a function of critical var
lot.

rocess design space. Risk analysis, identification of critical formu-
ation/process variables and interaction, understanding the effects
f these critical variables and interactions on the key product
uality attributes are essential steps to achieve enhanced pro-
ess understanding. Validating and challenging design space are
mportant steps to ensure a robust design space developed for a
harmaceutical manufacturing process.

. Conclusions

In this work, a dynamic pharmaceutical co-precipitation pro-
ess of gradually introducing water (non-solvent) to the ternary
ystem of naproxen (drug)–Eudragit L100 (polymer)–alcohol (sol-
ent) was monitored in real-time and in situ by using Lasentec
BRM and PVM technology. Based on the Fishbone analysis result,
he impact of high risk process variables such as co-precipitation
lurry temperature, slurry stirring rate, and non-solvent addition
ate on both the FBRM counts/s vs. time profile and CLD at the end
f co-precipitation process were examined systematically, using a
3 full factorial design. A 3D count-time-size plot was constructed

o map the entire co-precipitation process and distinguish vari-
us process stages: incubation, transition, and steady state. A new
ethod was developed to extract a derived process rate from the

asentec FBRM counts/s vs. time profile by calculating the maxi-
um slope of the FBRM counts/s vs. time after each addition of
X1 and X2, based on GLM modeling results. (a) 2D contour plot; and (b) 3D contour

water. Critical process variables were identified via ANOVA for both
transition and steady state periods. GLM were used for parameter
estimate of each critical variable. The GLM results demonstrated
clear trends about the effects of each critical variable, which can
be interpreted using principles of fundamental process phenom-
ena and Nyvlt’s diffusion layer model. Furthermore, contour plots
demonstrated the process windows bordered by ranges of critical
process variables where maximum Rate7 and maximum mode can
be obtained at the transition period and at the end of steady state,
respectively. Neural network models were able to link process vari-
ables with response variables both at transition period and steady
state with R2 of 0.90–0.98. PVM images evidenced nucleation and
crystal growth during the dynamic co-precipitation process.

In summary, this work demonstrated the critical importance
and technical feasibility of obtaining in-depth process understand-
ing using real-time PAT process monitoring, risk analysis, DOE,
multivariate statistical modeling, and fundamental process knowl-
edge during the course of process characterization and process
design space development under the ICH Q8(R2) framework.
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